BASL Controls Asymmetric Cell Division in Arabidopsis
نویسندگان
چکیده
Development in multicellular organisms requires the organized generation of differences. A universal mechanism for creating such differences is asymmetric cell division. In plants, as in animals, asymmetric divisions are correlated with the production of cellular diversity and pattern; however, structural constraints imposed by plant cell walls and the absence of homologs of known animal or fungal cell polarity regulators necessitates that plants utilize new molecules and mechanisms to create asymmetries. Here, we identify BASL, a novel regulator of asymmetric divisions in Arabidopsis. In asymmetrically dividing stomatal-lineage cells, BASL accumulates in a polarized crescent at the cell periphery before division, and then localizes differentially to the nucleus and a peripheral crescent in self-renewing cells and their sisters after division. BASL presence at the cell periphery is critical for its function, and we propose that BASL represents a plant-specific solution to the challenge of asymmetric cell division.
منابع مشابه
The BASL polarity protein controls a MAPK signaling feedback loop in asymmetric cell division.
Cell polarization is linked to fate determination during asymmetric division of plant stem cells, but the underlying molecular mechanisms remain unknown. In Arabidopsis, BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL) is polarized to control stomatal asymmetric division. A mitogen-activated protein kinase (MAPK) cascade determines terminal stomatal fate by promoting the degradation of the ...
متن کاملFine-scale dissection of the subdomains of polarity protein BASL in stomatal asymmetric cell division
Cell polarity is a prerequisite for asymmetric cell divisions (ACDs) that generate cell type diversity during development of multicellular organisms. In Arabidopsis, stomatal lineage ACDs are regulated by the plant-specific protein BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL). BASL exhibits dynamic subcellular localization, accumulating initially in the nucleus, but then additionally in...
متن کاملPhosphorylation of the Polarity Protein BASL Differentiates Asymmetric Cell Fate through MAPKs and SPCH
Cell polarization is commonly used for the regulation of stem cell asymmetric division in both animals and plants. Stomatal development in Arabidopsis, a process that produces breathing pores in the epidermis, requires asymmetric cell division to differentiate highly specialized guard cells while maintaining a stem cell population [1, 2]. The BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL)...
متن کاملThe chemical compound bubblin induces stomatal mispatterning in Arabidopsis by disrupting the intrinsic polarity of stomatal lineage cells.
Stem cell polarization is a crucial step in asymmetric cell division, which is a universal system for generating cellular diversity in multicellular organisms. Several conventional genetics studies have attempted to elucidate the mechanisms underlying cell polarization in plants, but it remains largely unknown. In plants, stomata, which are valves for gas exchange, are generated through several...
متن کاملPlant Development: Suppression the Key to Asymmetric Cell Fate
A new study shows that SPEECHLESS determines cell fate in the stomatal lineage but is inherited equally by daughter cells following an asymmetric cell division. The polarity determinant BASL acts as a MAPK scaffold, targeting SPEECHLESS for degradation in the larger daughter cell.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 137 شماره
صفحات -
تاریخ انتشار 2009